
No Work \Leftrightarrow No Points
Use Pencil Only \Leftrightarrow Be Neat & Organized

- 1. Given $\sin A = \frac{3}{5}, \cos B = -\frac{5}{13}, A$ is in quadrant I, and B is in quadrant II.
 - (a) (3 points) Draw two different angles representing information above and clearly label them.

(b) (2 points) Find the exact value for $\sin 2A$.

(b) _____

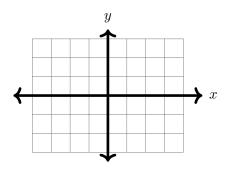
(c) (2 points) Find the exact value for $\cos 2B$.

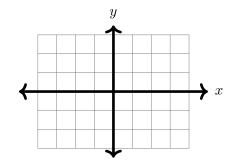
- (c) _____
- (d) (2 points) Find the exact value for sin(A+B).

(d) _____

(e) (2 points) Find the exact value for $\cos(A-B)$.

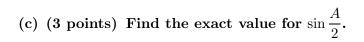
(e) _____


(f) (3 points) Find the exact value for tan(A+B).


(f) _____

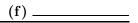
(g) (3 points) Find the exact value for $\tan \frac{B}{2}$.

(g) _____

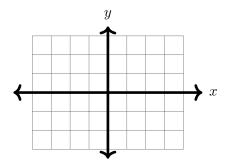

- 2. Given $\sin A = \frac{3}{7}, \cos B = -\frac{2}{5}, A$ is in quadrant II, and B is in quadrant III.
 - (a) (3 points) Draw two different angles representing information above and clearly label them.

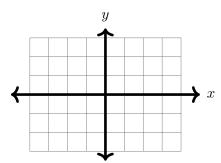
(b) (2 points) Find the exact value for $\cos(A+B)$.

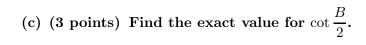
(b) _____



(d) (3 points) Find the exact value for
$$\sin \frac{B}{2}$$
.


(e) (3 points) Find the exact value for
$$\tan 2A$$
.


(f) (3 points) Find the exact value for
$$\cot 2B$$
.


3. Given
$$\tan A = \frac{3}{4}$$
, $\cot B = -\frac{12}{5}$, A is in quadrant III, and B is in quadrant IV.

(a) (3 points) Draw two different angles representing information above and clearly label them.

(b)	(2 points)	Find	the	exact	value	for	tan -	$\frac{A}{2}$.
-----	------------	------	-----	-------	-------	-----	-------	-----------------

(b) _____

(c) _____

(d) (3 points) Find the exact value for sec(A + B).

(d) _____

(e) (3 points) Find the exact value for $\csc(A-B)$.

(e) _____

(f) (2 points) Find the exact value for $\tan\left(\frac{\pi}{2} - \frac{B}{2}\right)$.

(f) _____